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Abstract. A Wigner crystal structure of the electronic ground state is induced by strong Coulomb interac-
tions at low temperature in clean or disordered two-dimensional (2d) samples. For fermions on a mesoscopic
disordered 2d lattice, being closed to a torus, we study the persistent current in the regime of strong in-
teraction at zero temperature. We perform a perturbation expansion starting from the Wigner crystal
limit which yields power laws for the dependence of the persistent current on the interaction strength. The
sign of the persistent current in the strong interaction limit is independent of the disorder realization and
strength. It depends only on the electro-statically determined configuration of the particles in the Wigner
crystal.

PACS. 73.23.Ra Persistent currents – 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.23.An
Theories and models; localized states

1 Introduction

The interplay of disorder and interaction in mesoscopic
samples has attracted considerable interest in recent
years [1]. A prominent experimental finding in this field is
the insulator-metal transition in 2d systems of high mo-
bility [2], occurring when the carrier density is increased.
This transition can neither be explained by disorder ef-
fects alone nor by interaction effects in clean samples and
is the subject of still increasing experimental and theoret-
ical activities (for a review see [3] and references therein).

One possible mechanism invokes both, interaction and
disorder and associates the insulator–metal transition
with the melting of a pinned Wigner crystal when the
carrier density increases and therewith rs (the interaction
energy in units of the kinetic energy) decreases, allowing
for metallic behavior at intermediate rs. Only at a higher
density, when rs is small, the interaction becomes negli-
gible and the now dominating disorder-induced Anderson
localization leads back to insulating behavior. Such a sce-
nario is supported by experiments [4] and numerical inves-
tigations of few interacting particles in disordered lattice
models [5–7].

Another important experimental result in mesoscopic
physics whose explanation necessitates to invoke disor-
der and interactions simultaneously is the value of the
persistent current in diffusive rings [8]. These persistent
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currents are much larger than the theoretical prediction
for non-interacting electrons in disordered rings [9]. While
the electron-electron interaction seems to play an essential
role, the disorder in the sample is also important: Inter-
actions cannot affect the persistent current in clean rota-
tionally invariant 1d rings [10,11], and the non-interacting
result is consistent with the experimental one for a clean
semiconductor ring in the ballistic regime [12].

This has generated a large theoretical activity, dealing
with the combined effect of interactions and disorder on
the enhancement of persistent currents in mesoscopic rings
(for an overview see e.g. [1,13,14] and references therein).
Even though different theoretical approaches suggest an
increase of the persistent current in disordered samples
due to repulsive Coulomb interactions, a quantitative un-
derstanding of the experiments is still lacking.

Within continuous models of fermions in 1d with dis-
order, repulsive interactions are found to enhance the
persistent currents, without [11] and with [15] spin. On
moderately disordered lattices, repulsive interactions are
however found to decrease the persistent current for spin-
less fermions in 1d [16–18]. It was concluded from an-
alytical considerations [19], using renormalization group
arguments, that 1d lattice models exhibit an interaction-
induced enhancement of the persistent current only when
the spin degree of freedom is taken into account. Nev-
ertheless, a numerical study of small systems [20] re-
vealed that repulsive interactions can slightly enhance
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the averaged persistent current even for spinless fermions
on a 1d lattice, provided the disorder is very strong.

A recent numerical investigation treating the per-
sistent current for strongly disordered individual 1d
chains [21,22] leads to the conclusion that, while Anderson
localization is dominating the non-interacting case, the
persistent current can be strongly enhanced by repulsive
local interactions at sample dependent intermediate values
of the interaction strength. This delocalization is accom-
panied by a reorganization of the ground state structure.
At half filling, strong interactions induce a regular charge
density in the Mott-insulator regime and decrease the
persistent current.

This suppression of the persistent current in the limit
of strong repulsive interactions is not limited to 1d models
of spinless fermions at half-filling with local interactions. It
occurs with long-range interactions [16] at arbitrary filling
and also in 2d lattices [5], when strong interaction (large
rs) leads to the formation of a Wigner crystal pinned by
the disorder in the ground state.

In the case of the Hubbard model at half filling [23] and
for spinless fermions in 1d chains without [24] and with
disorder [25], this suppression of the persistent current
at strong interaction has been understood quantitatively
from a perturbation theory starting at the Mott insula-
tor limit. In contrast, numerical Hartree-Fock approaches
which allow to treat larger systems than the exact diago-
nalization used in references [5,16] and which have been
used for weakly interacting particles in 1d and 2d [26],
are, at least in 1d, not able to quantitatively describe the
persistent current in the limit of strong interaction [27].

The sign of the persistent current in the case of spinless
particles in strictly 1d rings is independent on the disor-
der realization and the interaction strength. According to
a well-known theorem by Leggett [28], the sign is given
solely by the parity of the particle number N (paramag-
netic for N even and diamagnetic for N odd). This general
rule is confirmed by an explicit calculation for a Luttinger
liquid ring without disorder [29].

On the other hand, the sign of the persistent current
for particles with spin in disordered 1d rings or spinless
fermions in disordered 2d systems differs from sample to
sample and no general sign rule exists. Only in some spe-
cial cases, like non-interacting particles with spin in clean
1d rings [30], and for some interacting situations using the
Hubbard model [31,32], the sign of the persistent current
has been determined. The situation is less clear in the pres-
ence of long-range interactions and disorder we address in
this work. For electrons with spin in 1d rings having a par-
ticular disorder consisting of only one barrier, a tendency
towards diamagnetic responses, independent of the parti-
cle number, was found at strong repulsive interaction [33].

For spinless fermions in strongly disordered 2d lat-
tice models, it has been noticed in numerical studies that
the sign of the persistent current becomes realization-
independent in the limit of strong interaction [5,6,34,35].
Detailed studies of the local current show that the sup-
pression of its transverse component by the interactions
is much stronger than the decrease of the longitudinal

current. On such a lattice, closed to a torus, the struc-
ture of the ground state at strong interaction is a Wigner
crystal pinned by the disorder [5,6,35]. While the sys-
tem exhibits Anderson localization at weak interaction,
the regime of intermediate interaction shows indications
of a new type of correlated metal [36].

For spinless fermions in 2d lattice models without dis-
order, the amplitude of the persistent current has recently
been studied analytically and numerically at strong inter-
action [37]. When rs is large, the hopping matrix elements
between neighboring lattice sites being much smaller than
the interaction strength, the behavior can be understood
from a perturbation theory in terms of the hopping matrix
elements.

In this paper we report a study of the persistent
current in disordered 2d lattice models at very strong
Coulomb interaction, using a perturbation theory expan-
sion around the pinned Wigner crystal. While the under-
standing of this regime cannot directly explain the high
persistent currents observed experimentally in diffusive
metal rings, it may be relevant for the insulating side at
low carrier density of the insulator-metal transition in 2d.
We show how the sign of the persistent current at strong
interaction follows systematically from the structure of
the Wigner crystal and find simple rules for this sign. For
the absolute values, power laws similar to the ones found
in [37] are obtained also in the disordered case. We shall
show how the presence of disorder and spin can influence
the prefactors and the exponents of these power laws.

In the following section we introduce the model for
interacting fermions on a disordered lattice and the quan-
tities used to characterize its properties. The perturbation
theory is developed in Section 3 and applied in Section 4
to the persistent current in longitudinal and transverse
direction before we conclude the paper.

2 Model

2.1 Hamiltonian

We consider N fermions on a disordered square lattice
with Coulomb interaction. The corresponding Hamilto-
nian reads

H = HK +HD +HI . (1)

The kinetic energy term is

HK = −t
∑
〈i,i′〉

∑
σ

c+i,σci′,σ (2)

with the hopping matrix element t = 1 setting the energy
scale. We concentrate on rectangular 2d lattice structures
with Lx×Ly sites i. The fermionic on-site operators ci,σ ≡
c(xi,yi),σ destroy a particle with spin σ located at ri =
(xi, yi), where the position coordinates xi ∈ {1, 2, . . . , Lx}
and yi ∈ {1, 2, . . . , Ly} are measured in units of the lattice
spacing a.

The disordered potential contribution is

HD = W
∑
i,σ

vin̂i,σ , (3)
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where W is the disorder strength, with the independent
random variables vi, drawn from a box distribution within
the interval [−1/2; +1/2]. The occupation number oper-
ators are as usual given by n̂i,σ = c+i,σci,σ. The Coulomb
interaction is described by the term

HI =
U

2

∑
i,i′
i6=i′

∑
σ,σ′

n̂i,σn̂i′,σ′

|ri − ri′ |
+ U

∑
i

n̂i,↑n̂i,↓
d

, (4)

the interaction strength being parametrized by U . The
sum in HK runs over all pairs of sites which are next
neighbors on the lattice 〈i, i′〉, while the interaction term
is composed of a sum over all pairs of different sites. With
these definitions, one finds rs = U

2t
√
πν

, with the electronic
density or filling factor ν = N/LxLy = 1/b2, b being the
average distance between particles. An additional term
takes into account double occupancy of a site by two par-
ticles of different spin, d (< a) being a measure for the size
of the on-site orbitals.

In order to study the persistent current, we close the 2d
lattice first to a cylinder by imposing generalized periodic
boundary conditions

c(Lx,y);σ = exp(iφx)c(0,y);σ (5)

in x-direction. For φx = 0, this is equivalent to usual pe-
riodic boundary conditions. Finite φx accounts for a mag-
netic flux Φ = φxΦ0/2π threading the ring, Φ0 being the
flux quantum. We choose the units such that Φ0/2π = 1.
In order to reduce finite size effects, we use periodic bound-
ary conditions in y-direction, and thus obtain a torus
topology with the fluxes (φx, φy) = (φx, 0). In Section 4.3
we will use the dependence on the transverse flux φy to
study also the transverse current.

2.2 Persistent current

The magnetic flux threading the ring can drive a persistent
current through the system. At zero temperature, it is
given by

I(φx) = − ∂E0

∂φ

∣∣∣∣
φ=φx

, (6)

where E0 is the many-particle ground state energy. Thus,
the persistent current at T = 0 is a measure of the depen-
dence of the ground state energy on the magnetic flux.
Since the latter can be expressed in the form of a bound-
ary condition, it is at the same time a measure of the
ground state sensitivity to the boundary conditions and
can be related to the conductance of the sample [38].

3 Theoretical approach

3.1 Wigner crystal at strong interaction

In the non-interacting limit, disorder leads to Anderson
localization of the one-particle states and the problem can

be treated by a perturbative expansion around the on-site
localized states in terms of the hopping matrix elements
t [39]. Hopping to distant sites costs disorder energy of the
order of W such that a series expansion in t/W results.

In the many-body case, strong repulsive interaction U
leads to Wigner crystallization of the ground state with
on-site localized charges in the electro-statically most fa-
vorable position. One can use a similar perturbative for-
malism in terms of the hopping t, but now, the essential
cost in energy caused by deplacing one of the many parti-
cles is given by the increase of the interaction energy such
that one obtains a systematic expansion in terms of t/U .

We decompose the Hamiltonian (1) as

H = H0 +HK (7)

with an unperturbed part containing disorder and
interaction

H0 = HD +HI , (8)

and the perturbation given by the hopping terms of HK.
H0 is composed of terms containing only occupation

number operators in the one-particle on-site basis. There-
fore, its N -particle eigenstates |ψα〉 are Slater determi-
nants built from N different one-particle functions and
are completely characterized by the occupation numbers
ni,σ(α) ∈ {0, 1} of the one-particle states on site i with
spin σ, fulfilling the condition N =

∑
i,σ ni,σ(α). There-

with, the many-body eigenstates of H0 can be written in
the form

|ψα〉 =

∏
i,σ

(c+i,σ)ni,σ(α)

 |0〉· (9)

(|0〉 is the vacuum state), and the corresponding eigenen-
ergies are given by Eα = ED

α + EI
α with

ED
α = W

∑
i,σ

vini,σ(α) and (10)

EI
α =

U

2

∑
i,i′
i6=i′

∑
σ,σ′

ni,σ(α)ni′,σ′(α)
|ri − ri′ |

+U
∑
i

ni,↑ni,↓
d
· (11)

The ground state |ψ0〉 of this Coulomb glass problem is
given by purely classical considerations, minimizing dis-
order and interaction energy. Its charge configuration de-
pends in general on the specific disorder realization of the
sample. At strong enough interaction, when the disorder
effects are dominated by the interaction, the structure of
|ψ0〉 is the Wigner crystal of minimal interaction energy,
independent of the disorder realization. The rigid array of
charges can be translated as a whole through the system
without changing the interaction energy. Nevertheless, the
contribution of the disordered potential to the energy de-
pends on the realization and pins the Wigner crystal in a
realization dependent position. It is important to realize
that the structure of the Wigner crystal is entirely given
by the lattice geometry and the Coulomb interaction of
the N particles.

In contrast to H0, the perturbing part HK of the
Hamiltonian depends on the magnetic flux through
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the ring since the latter appears in the boundary condi-
tion in x-direction and therefore influences some hopping
matrix elements. Writing all the hopping terms explicitly,
one obtains

HK(φx, φy) = −t
∑
σ

 Lx∑
x=1

Ly∑
y=2

c+(x,y);σc(x,y−1);σ

+
Lx∑
x=2

Ly∑
y=1

c+(x,y);σc(x−1,y);σ + e−iφy

Lx∑
x=1

c+(x,1);σc(x,Ly);σ

+e−iφx

Ly∑
y=1

c+(1,y);σc(Lx,y);σ + H.C.

 . (12)

3.2 Perturbation expansion for spinless fermions

For electrons with spin, the unperturbed ground state is
2N -fold degenerate since all the spin configurations yield
the same energy when hopping is suppressed. Further de-
generacies appear in the case of clean systems whenW = 0
allows for translational symmetry.

For simplicity we first treat the case of completely
spin polarized systems (all spins up, equivalent to spin-
less fermions) with disorder where the ground state
of H0 is not degenerate and the expansion in HK is
straightforward.

Using standard perturbation theory, the correction to
the ground state energy in nth order is given by

E
(n)
0 =

∑
α1,α2,...,αn−1

(13)

〈ψ0|HK|ψα1〉〈ψα1 |HK|ψα2〉 . . . 〈ψαn−1 |HK|ψ0〉
(E0 −Eα1)(E0 −Eα2) . . . (E0 −Eαn−1)

,

with the sums running over all the eigenstates ofH0 except
the ground state itself.

The numerator of the contributions to the sum of
equation (13) contains matrix elements 〈ψαk |HK|ψαk+1〉
of the perturbing Hamiltonian. Since HK consists only
of one-particle hopping terms, non-zero matrix elements
can arise only if the two states |ψαk〉 and |ψαk+1〉 differ
by nothing else than a single hop of one of the particles.
From (13) one sees that a finite contribution to the sum
over different sequences of intermediate states α is ob-
tained only if the n one-particle hops are such that the
final configuration has an overlap with the initial one, cor-
responding to the ground state. The n sums over interme-
diate states αk in equation (13) can then be rewritten as a
sum over all the sequences S = (α1, α2, . . . , αn−1) which
give a nonzero contribution. Denoting the numerator of
the terms by Num(S) and the denominator by Den(S),
equation (13) takes the form

E
(n)
0 =

∑
S

Num(S)
Den(S)

· (14)

We will now evaluate the numerator and the denomina-
tor separately. The numerator Num(S) can be calculated

directly from the n hopping matrix elements, thereby tak-
ing into account the flux dependent phase for hops cross-
ing the boundary. Since we consider fermions, the corre-
sponding operators anti-commute and their order in the
products (9) defining the basis states |ψα〉 is crucial for the
sign. When the starting point (the ground state configu-
ration) is re-established after n consecutive hopping pro-
cesses, the order of the operators can be modified. Then,
the sign of the permutation PS of the operators, caused by
the sequence of one-particle hops S, must be incorporated
in the result. Altogether, one obtains

Num(S) = sign(PS) (−t)n exp [−iφx(hf − hb)] . (15)

hf and hb denote the number of hoppings across the
boundary between sites (Lx, y) and (1, y) in forward and
backward direction, respectively. Therefore, only the cor-
rections to the ground state energy due to sequences with
hf − hb 6= 0 are flux dependent.

Moving particles creates defects in the Wigner crystal.
This increases the interaction energy (see Eq. (11)) of the
ground state EI

0 by the amount Uεα, where

εα =
1
U

(
EI
α −EI

0

)
(16)

is non-negative and independent of U . It accounts for the
difference of the inter-particle distances between the con-
figurations of the state |ψα〉 and the ground state |ψ0〉.
We assume always U � W , such that the difference in
potential energy can be neglected in a first step except
for the case εα = 0 which occurs for some special sample
geometries and particle numbers. Corrections due to the
disorder will be considered in Section 4.2.

In the generic case when εα > 0 for all intermediate
states, the energy differences in the denominator Den(S)
are dominated by the difference in interaction energy. In
the limit of strong interaction, one therefore gets

Den(S) ≈ (−U)n−1
n−1∏
α=1

εα . (17)

4 Persistent current

4.1 Longitudinal current

Since the longitudinal persistent current at zero tempera-
ture I = −∂E0/∂φx is given by the flux dependence of the
ground state energy, a perturbative treatment of the latter
in terms of the hopping t yields a systematic expansion of
the persistent current.

Calculating the nth order correction E
(n)
0 (φx) to the

ground state energy, one gets the correction to the persis-
tent current

I(n)(φx) = −∂E
(n)
0

∂φx
(18)

in nth order in the perturbation HK.
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4.1.1 Relevant terms of the perturbation theory

When the sequence S of n hopping elements is chosen
such that each of the particles returns to its initial po-
sition without completing a tour around the ring, every
particle which has crossed the boundary must necessarily
cross it a second time in the opposite direction such that
hb = hf . Therefore the flux dependence of these contribu-
tions disappears and they cannot influence the persistent
current. The lowest order of the perturbation theory which
yields a finite contribution I(n) is n = Lx, corresponding
to the sequences in which one particle starting at (x0, y0)
crosses the boundary and returns to its original position
after completion of its journey around the ring at constant
y = y0. If there are more than one particle in the line of the
lattice with constant y = y0, a contribution of the same
order arises from sequences of hops which move each of
the particles to the position of its neighbor (see Fig. 1).
Since any hopping in y-direction leads to an increase of
the order of the contribution, the lowest order correction
to the persistent current is given by the considered pro-
cesses in which y is kept constant and all of the hops are
either in forward or in backward direction.

We now address the dependence of the permutation PS
corresponding to this kind of process on the number Ny of
particles in the line at constant y. If Ny = 1, the particle
returns to its initial site, the final configuration is exactly
equal to the initial one and sign(PS) = +1. In the general
case of arbitrary Ny, the considered sequences of hops
(see Fig. 1) lead to a cyclic rotation of the order of the Ny
particles and the sign of the corresponding permutation is
sign(PS) = (−1)Ny−1.

This yields the result for the lowest-order φx-depen-
dence of the ground state energy

E
(Lx)
0 (φx) ≈ −

∑
S

tLxsign(PS) exp [−iφx(hf − hb)]
ULx−1εα1εα2 . . . εα3

·

(19)

Each sequence considered in this sum contains either Lx
forward hops with hf = 1; hb = 0 or it contains Lx back-
ward hops with hf = 0; hb = 1. Each given backward
sequence Sb can now be assigned to the forward sequence
Sf with the reversed order of hops whose contribution dif-
fers only in the sign of the flux-dependent phase-factor.
One can express the result as a sum over the forward hop-
ping sequences

E
(Lx)
0 (φx) ≈ −2

tLx

ULx−1

∑
Sf

sign(PS) cosφx
εα1εα2 . . . εαLx−1

· (20)

Within the above perturbation theory, when processes cor-
responding to two loops around the ring (which are at least
of order 2Lx) are neglected as compared to the lowest or-
der one-loop processes, the flux dependence of the ground
state energy is harmonic and 2π-periodic in φx.

Fig. 1. 4 particles on 6 × 6 sites. The Wigner crystal con-
figuration has regular square structure. The arrows indicate
Lx = 6 hops from which a contribution in lowest order to the
persistent current arises.

4.1.2 Lowest order result for the persistent current

From (20), one obtains the persistent current in Lxth or-
der perturbation theory

I(Lx)(φx) = Ĩ(Lx) sinφx (21)

with the flux–independent amplitude

Ĩ(Lx) ≈ −2
tLx

ULx−1

∑
Sf

sign(PS)
εα1εα2 . . . εαLx−1

· (22)

This result contains several interesting features. First, the
absolute value of the persistent current decays proportion-
ally to tLx/ULx−1, in the limit of strong interaction. In or-
der to determine the constant prefactor of this power law,
it is sufficient to figure out all possible processes which
transform the ground state into itself, using Lx forward
hopping processes, and to calculate the corresponding εα
from (16).

Furthermore, the sign of the dominating contributions
to the persistent current in the limit of strong interaction
is given by −sign(PS), which for spin-polarized electrons
is given by (−1)Ny with the number Ny of electrons in the
line of the sample at constant y. This is consistent with
the well-known theorem by Leggett for the sign of the
persistent current of spinless fermions in 1d [28] (positive
Ĩ or paramagnetic response for N even and negative or
diamagnetic for N odd). Only if the unperturbed ground
state (Wigner crystal) configuration of the particles is such
that the particle numbers Ny in different occupied lines y
have different parity, the prefactors of the corresponding
terms have to be considered to determine the sign of the
persistent current. For Ny particles in a line of length Lx,
the number of hopping sequences Nseq(Ny) going from the
ground state to itself is the number of terms contributing
to the sum in equation (22). Therewith, the result for the
persistent current can be roughly estimated to be

Ĩ(Lx) ∝ tLx

ULx−1

Ly∑
y=1

Nseq(Ny)(−1)Ny . (23)
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In the limit of low filling Ny/Lx → 0, Nseq(Ny) is approx-
imatively given by the number of possibilities Nseq(Ny)
for Ny particles to each make Lx/Ny (here we assume
for simplicity that Lx/Ny is an integer) forward jumps
to reach the position of its neighbor, leading to the esti-
mate Nseq(Ny) ≈ Lx!/[(Lx/Ny)!]Ny . At finite filling, one
must consider that the neighbor particle must have left its
starting site before the arriving particle can do its last hop.
This correlation of the order of the hops of different par-
ticles reduces Nseq(Ny). With increasing filling, Nseq(Ny)
starts to exponentially increase with Ny and continues
to increase more slowly until Ny = Lx/2 (half filling).
For larger filling it decreases, thereby obeying a symme-
try with respect to half filling which is a consequence of
the symmetry between particles and holes. One can ex-
pect that the contribution of the line Ny = Nmax

y with
the largest number Nseq(Nmax

y ) of sequences (at low fill-
ing this is the one with the maximum number of par-
ticles) may dominate over the contributions of the ones
with fewer sequences. The sign of the persistent current is
then likely to be (−1)N

max
y .

4.1.3 Examples

As an example, we calculate explicitly the lowest order
term in 1

U of the persistent current for 4 spinless fermions
on a few small Lx × Ly rectangular lattices, using the
formula (22).

4× 2 sites
We start with the simple case of a 4×2 lattice. The electro-
statically lowest energy configuration (the Wigner crystal)
is shown in Figure 2. The number of particles in the two
lines at y = 1 and y = 2 of the system is Ny = 2, and
the lowest order of the perturbation theory which yields a
contribution to the persistent current is n = Lx = 4. From
these two ingredients, we can immediately determine the
sign (sign(PS) = −1 for Ny even) and the power law of
the decrease of the persistent current at strong interac-
tion strength. The leading term of the amplitude (22) is
given by

Ĩ(4) ≈ 2
t4

U3

∑
Sf

1
εα1εα2 . . . εαLx−1

· (24)

This result is always positive and ∝ 1/U3. Therefore, the
response of the system to the applied flux is always para-
magnetic at strong interaction.

For this example, it is an easy exercise to figure out all
hopping sequences which contribute in lowest order. For
each line y = 1, 2, one finds 4 different sequences and can
explicitly calculate the interaction energies and εα of the
intermediate states. This allows to evaluate the sum over
all sequences in (24) with the result

Ĩ → Ĩ(4) ≈ 853
t4

U3
for

t

U
→ 0 . (25)

In the case of 8 spinless fermions on 4× 4 sites, the same
analysis can be carried out except for the fact that now

Fig. 2. Ground state configuration for 4 particles on a 4× 2
lattice.

four lines y = 1, 2, 3, 4 must be considered, yielding an
additional factor of 2 in (25). In particular, the persistent
current is always paramagnetic in the strong interaction
limit, as found numerically in reference [35].

2× 4 sites
The situation for 4 particles on 2× 4 sites is even simpler
since there are four lines y = 1, 2, 3, 4, each of them con-
taining Ny = 1 particle. Since Lx = 2, the leading order
of the perturbation theory at strong interaction is n = 2,
and the sequences of hops contain only one intermediate
state. The evaluation of (22) yields

Ĩ → Ĩ(2) ≈ −15
t2

U
for

t

U
→ 0 , (26)

and the persistent current is diamagnetic at strong
interaction.

6× 6 sites
4 particles on 6× 6 sites is the situation investigated nu-
merically in reference [5], at strong disorder. As a function
of the interaction strength, an increase of the average per-
sistent current at intermediate strength and a decrease
at strong interaction was found. An exponential depen-
dence on the interaction strength was fitted to the data
for not too strong interaction. Furthermore, it was noticed
that, at strong interaction, the persistent current became
paramagnetic for all samples, independent of the disorder
realization.

The Wigner crystal ground state on such a lattice is
of square form, as shown in Figure 1. Thus, there are
two lines with Ny = 2 in which hopping sequences of
Lx = 6 hops can contribute to the persistent current. This
explains immediately that the response is paramagnetic,
since Ny is even and −sign(PS) = +1. The persistent cur-
rent decreases in the strong interaction limit as t6/U5. A
laborious evaluation of all the 18 sequences for each of the
lines with Ny = 2 yields the result

Ĩ → Ĩ(6) ≈ 1.808× 106 t
6

U5
for

t

U
→ 0 . (27)

As compared to the previous cases, the prefactor is much
larger. This is caused by the bigger number of contribut-
ing sequences and, more importantly, the difference in in-
teraction energy between the intermediate states and the
unperturbed ground state εα. The latter can be very small
when the distance between the particles is large.

A numerical investigation by direct diagonalization of
the corresponding Hamiltonian matrices [40] confirms the
signs, the power laws and the numerical prefactors pre-
dicted by the above formulas, also for the last case of 4
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particles on 6 × 6 sites, where the persistent current is
indeed found to follow the power law of (27) at strong in-
teraction. However, it must be noticed that the sign of the
persistent current is well established [5] at interaction val-
ues much lower than the ones where the agreement in am-
plitude with our formula starts to be good. Even though
the data always follow the power laws at strong inter-
action, fitting an exponential interaction dependence, as
done in reference [5], is possible at moderately strong in-
teraction, and might allow to extract useful informations
in the regime where higher order terms of the perturbation
theory are non-negligible.

4.2 Disorder effects at strong interaction

The role of the disorder and realization-dependent fluc-
tuations of the persistent current vanish in the limit of
strong interaction, when W/U → 0. In this section, we
treat the lowest order correction in W/U to the results
presented above.

In addition, we consider the special case of a perfectly
clean system W = 0, in which the translational symmetry
can considerably influence the interaction dependence of
the persistent current.

4.2.1 Disorder corrections to the persistent current

In order to take into account the disorder corrections in
the perturbation theory for the longitudinal persistent
current, it is not sufficient to consider in the denominator
of the expansion terms the εα which completely neglect
the disorder energy. Instead, the full energy differences
E0 −Eα = −Uε̃α with

ε̃α =
1
U

(
EI
α +ED

α −EI
0 −ED

0

)
(28)

account also for the differences in disorder energy be-
tween the intermediate states α and the ground state. The
difference

ε̃α − εα =
1
U

(
ED
α −ED

0

)
=
W

U

∑
i

vi (ni(α)− ni(0)) ,

(29)
is of the order W/U and vanishes in the limit W/U → 0.
With the definition

dα =
∑
i

vi (ni(α)− ni(0)) (30)

we can write ε̃α = εα + W
U dα and therewith express the

energy difference terms in the denominator of (13) as

1
E0 −Eα

=
−1
Uε̃α

=
−1

Uεα
(

1 + W
Uεα

dα
) · (31)

Taking the lowest order term in W/U , and averaging over
the ensemble yields〈

1
E0 − Eα

〉
≈ 1
−Uεα

(
1− W

Uεα
〈dα〉

)
, (32)

where the brackets 〈. . .〉 denote the ensemble average over
all disorder realizations. At first glance one could expect
that the correction linear in W/U vanishes because 〈dα〉 =
0, when the disorder average is taken over all values of
dα. However, since the ground state is the Wigner crystal
pinned at the lowest disorder configuration, dα is more
likely positive than negative. The first correction is thus
linear in W , and since εα is always positive, the lowest
order correction to the persistent current due to disorder
is reducing the contributions of all sequences, the result
being

I
(Lx)
W ≈ −2

tLx

ULx−1

∑
Sf

sign(PS)
εα1εα2 . . . εαLx−1

×
(

1−
∑
α

1
εα

W 〈dα〉
U

+O[(W/U)2]

)
. (33)

4.2.2 The particular case W = 0

At W = 0 we have H0 = HI , and the ground state at
t = 0 is degenerate because of the translation symmetry.
The number nD of equivalent degenerate Wigner crystal
positions and corresponding basis states |ψ(β)

0 〉 depends on
the system size and the number of particles. The hopping
terms however lead to a coupling of these degenerate basis
states, and split the degenerate levels, except for special
situations where symmetries persist. The coupling terms
themselves can be expressed in terms of a perturbative
expansion in t. The order p in which the degeneracy of
the ground state is lifted may be different from the lowest
order n which yields a finite persistent current. We address
in the following the three different cases which may occur.

p > n In this case, the splitting can be ignored as com-
pared to the persistent current at strong interaction. The
perturbation theory can be applied as in the disordered
case, using one of the degenerate ground state configura-
tions (the result will be the same for arbitrary superposi-
tions of the degenerate basis states).

p = n When the persistent current is given by terms
which are of the same order as the ones which lift the
ground state degeneracy, the flux dependent correction to
the ground state energy and the persistent current are
given by the lowest eigenvalue of the effective coupling
matrix M between the nD degenerate basis states. The
matrix elements are

Mβ,β′ =
∑

α1,α2,...,αp−1

(34)

〈ψ(β)
0 |HK|ψα1〉〈ψα1 |HK|ψα2〉 . . . 〈ψαp−1 |HK|ψ(β′)

0 〉
(E0 −Eα1)(E0 −Eα2) . . . (E0 −Eαp−1)

·

Since in this case all matrix elements are ∝ tn/Un−1, the
lowest eigenvalue and thus the persistent current will fol-
low such a power law too.

p < n When the levels are split at an order which is lower
than the one which yields contributions to the persistent



144 The European Physical Journal B

current, the higher order terms must be calculated using
the lowest energy ground state found from the diagonal-
ization of M . Such a ground state will be a superposition

|ψ0〉 =
nD∑
β=1

fβ|ψ(β)
0 〉 with

nD∑
β

|fβ |2 = 1 (35)

of the different Wigner crystal positions. Plugging this
ground state into the general expression for the corrections
to the ground state energy (13), one gets

E
(n)
0 (W = 0) =

∑
β,β′

f∗βfβ′
∑

α1,α2,...,αn−1

(36)

〈ψ(β)
0 |HK|ψα1〉〈ψα1 |HK|ψα2〉 . . . 〈ψαn−1 |HK|ψ(β′)

0 〉
(E0 −Eα1)(E0 −Eα2) . . . (E0 −Eαn−1)

,

and realizes that contributions can arise from hopping
processes starting at any of the ground state components
|ψ(β)

0 〉, and ending at an arbitrary |ψ(β′)
0 〉 where β and β′

can be equal or different. The processes with β 6= β′ can
in some special cases have a lower power in 1

U than the
processes with β = β′, relevant in the disordered case, and
therefore dominate in the limit of strong interaction.

The case W = 0 can be qualitatively different from the
disordered case W 6= 0, even at very weak disorder. The
reason for this is the fact that the unperturbed ground
state is a superposition of the degenerate positions of the
Wigner crystal. This degeneracy is lifted by the disorder,
and the typical energy difference between two positions is
of the order W

√
N (this arises from the N different ran-

dom on-site energies, all being of order W ). The coupling
between these electro-statically equivalent states is pro-
vided by the hopping terms and can itself be estimated
from a perturbation theory. The lowest order coupling
needs a number of hops which is typically p = N since
the Wigner crystal must in most cases be translated as a
whole and each of the particles must hop at least once. In
some cases, a p < N can be sufficient, as in the example
of 3 particles on 4× 2 sites (see below).

Then, the coupling decreases at strong interaction as
tp/Up−1 and becomes, in the limit of strong interaction
U , always much smaller than the splitting due to the dis-
order. This holds at any finite disorder value (provided
p > 1), and prevents a mixing of the different Wigner crys-
tal configurations in the ground state. Only for W = 0,
the splitting by the disorder vanishes, and an infinitesi-
mal coupling leads to the superposition of the different
configurations.

4.2.3 Example for disorder corrections

4× 2 sites, 4 particles
The disorder dependence of the flux sensitivity is illus-
trated for the example of 4 particles in (Lx, Ly) = (4, 2).
One expects an 1/U3 dependence for the leading term
of the persistent current (24) and, according to (33), a
W/U4 dependence for the linear correction in disorder.

Fig. 3. Two degenerate configurations for 3 particles on 4×2
sites which can be linked to each other by sequences of only
two hopping processes.

We have performed numerical calculations at strong in-
teraction [40], which are in good agreement with these
power laws predicted by the lowest order of the pertur-
bation theory. The persistent current decreases when the
strength of the disorder is increased, as predicted by the
negative correction in formula (33).

Effects of degeneracies at W = 0
The clean case however has a very different amplitude due
to the degeneracies in the Wigner crystal. The persistent
current can be calculated from (36), and after considering
all the possible sequences between the different degenerate
configurations, one obtains Ĩ(4)(W = 0) ≈ 2.1238 Ĩ(4),
with Ĩ(4) taken from (24). A numerical check [40] confirms
this result at strong interaction.

4× 2 sites, 3 particles, W = 0
In order to show that the absence of disorder does not only
change the prefactor of the interaction dependence at large
U , but can even influence the power of the U -dependence,
we consider 3 particles in (Lx, Ly) = (4, 2). The parti-
cle which is alone in one line has two possible positions
which are degenerate at t = W = 0, and there exists a se-
quence of only two one-particle hops which links the two
degenerate states with each other (see Fig. 3). Since the
ground state at W = 0 is a superposition of all possible
degenerate configurations, this process leads to a contri-
bution ∝ t2/U to the persistent current which dominates
at strong interaction. In the disordered case, in contrast,
the degeneracy of the ground state configurations is lifted
and only sequences consisting of at least four hops can
link the ground state to itself. Then, the interaction de-
pendence of the lowest order contribution to the persistent
current is ∝ t4/(WU2). Interestingly, in this example, one
of the intermediate states touched by a sequence of 4 hops
can be a different, but electro-statically equivalent config-
uration of the Wigner crystal, and εα = 0, such that even
at U �W , the disorder energy cannot be neglected.

A numerical check [40] shows that by adding the dis-
order, the asymptotic dependence indeed follows this pre-
diction and goes from ∝ U−1 to ∝ U−2.

4.3 Transverse current

4.3.1 General considerations

Without disorder, the current in y-direction must vanish
because of the symmetry of the problem (no flux is applied
in y-direction). While this remains true in the ensemble
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Fig. 4. A sequence of hopping processes which gives rise to a
finite contribution to the transverse current in the disordered
system of 4 particles on 6× 6 sites. The arrows indicate Lx +
Ly = 12 forward and upward hops.

average, the presence of disorder breaks this symmetry
in individual samples. A finite transverse current can be
observed in addition to the longitudinal current driven by
the flux φx. The transverse current can be calculated from

It(φx) = − ∂E0(φx, φy)
∂φy

∣∣∣∣
φy=0

, (37)

such that a theoretical approach to determine It(φx) con-
sists in using the perturbative expansion for the ground
state energy, as for the longitudinal current, but with a fi-
nite φy . Then, the derivative with respect to φy at φy = 0
can be evaluated for the leading contribution in the strong
interaction regime. Therefore, only terms in the series (13)
which depend on φy can make a finite contribution to the
transverse current.

In order to get such contributions, one needs hopping
sequences in y-direction which contain hops crossing the
boundary between sites (x, Ly) and (x, 1) with hu−hd 6= 0.
hu and hd denote the number of such hops from y = Ly
to y = 1 (‘upwards’) and from y = 1 to y = Ly (‘down-
wards’).

However, the flux dependence of the energy due to se-
quences containing Ly upward or Ly downward hoppings
is ∝ cos φy , as for the longitudinal processes (20), which
are ∝ cos φx. As a consequence, the resulting transverse
current from these sequences is ∝ sin φy , and vanishes
when φy = 0 is taken, just like the longitudinal current
(21) at φx = 0. Therefore, no transverse current can be
obtained in the order Ly of the perturbation theory.

Nevertheless, higher order sequences exist which do
lead to finite contributions. These are due to sequences of
hops which cross both, the boundary in x, and the bound-
ary in y-direction. The lowest order of the expansion in
which transverse currents appear is m = Lx + Ly, cor-
responding to sequences which consist of a combination
of only forward and downward hops, only backward and
upward hops, or vice versa, which complete one round in
both spatial dimensions of the system. An example of such
a sequence is shown in Figure 4.

As before, each of the sequences containing only for-
ward and upward hops Sfu can be associated with the re-
verse process consisting of backward and downward hops
Sbd. The contribution of the reverse process differs only
in the sign of the flux-dependent phase factors. The cor-
rection to the ground state energy (13) of all Sfu and Sbd

sequences together can be written as

E
(m)
0,fu+bd = −2

tm

Um−1
cos(φx+φy)

∑
Sfu

sign(PSfu)
ε̃α1 . . . ε̃αm−1

· (38)

The same association can be made for sequences contain-
ing only forward and downward hops Sfd, which are re-
grouped with the corresponding reverse processes consist-
ing of backward and upward hops, yielding

E
(m)
0,fd+bu = −2

tm

Um−1
cos(φx−φy)

∑
Sfd

sign(PSfd)
ε̃α1 . . . ε̃αm−1

· (39)

4.3.2 Lowest order result for the transverse current

By taking the derivative with respect to φy at φy = 0,
we obtain for the transverse current in mth order of the
perturbation theory

I
(m)
t (φx) = 2

tm

Um−1
sinφx (40)

×
(∑
Sfu

sign(PSfu)
ε̃α1 . . . ε̃αm−1

−
∑
Sfd

sign(PSfd)
ε̃α1 . . . ε̃αm−1

)
,

with m = Lx + Ly being the lowest order which yields a
non-zero contribution. Even when U � W , the disorder
energy cannot be neglected as in the lowest order term
for the longitudinal current, since the two contributions
to the current in (40) cancel each other exactly when the
disorder vanishes. It can also be seen that the lowest order
result for the transverse current is proportional to sin φx
and vanishes with the longitudinal current at φx = 0.

4.3.3 Example

In the case of 4 particles in a lattice of 6 × 6 sites, we
have seen above (see Eq. (27)) that the longitudinal per-
sistent current decreases at strong interaction following
the power law ∝ t6/U5. The suppression of the transverse
current is much more pronounced, since the leading contri-
bution at strong interaction is of the order Lx +Ly = 12,
and our theory (40) predicts that it decays ∝ t12/U11.
This means that the particle mobility is more and more
restricted to the longitudinal direction when the interac-
tion is increased. That the suppression of the transverse
current is much stronger than the one of the longitudi-
nal persistent current has been noticed in the numerical
study of reference [5]. The dominance of the longitudinal
current at strong interaction also explains the observation
of “plastic flow” in a study of the local persistent cur-
rents [35]. The orientation of the local currents has been
proposed as a signature of the insulator-metal transition
occurring in interacting 2d systems [6].
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4.4 Persistent current for electrons with spin

In this section we present some examples of the effects
of the spin of the electrons on the longitudinal persistent
current, showing that our approach is not restricted to
spinless fermions, but can also be used for electrons car-
rying spin.

For finite systems containing N particles, it is well
known that the spin polarization of the ground state can
depend on the magnetic flux due to level crossings be-
tween states of different spin symmetry as a function of
the flux [33]. However, without an external magnetic field
acting on the electrons in the ring, there is a degeneracy
related to the operator Sz in the subspace of fixed total
spin and one can write E(S2, Sz) = E(S2).

It is in principle possible (though difficult experimen-
tally) to create a magnetic flux through the ring while the
magnetic field remains vanishing at the positions of the
electrons in the ring. Such a flux does not lift the spin
degeneracy mentioned above. If we now want to follow
the dependence of the ground state energy on the flux, we
can restrict the study to the subspace of minimum abso-
lute value of Sz, choosing Sz = 0 for an even number of
particles with N↑ = N/2 spins up and N↓ = N/2 spins
down, or Sz = 1/2 for an odd number of particles with
N↑ = N+1

2 spins up and N↓ = N−1
2 spins down.

4.4.1 One-dimensional systems

In 1d, a general rule exists for the sign of the persistent
current in the case of spinless fermions [28]. This rule is
valid at arbitrary disorder and interaction. Below, we ad-
dress the question of the sign of the persistent current for
electrons with spin in different parameter regimes.

Non-interacting electrons with spin
In the case of non-interacting electrons with spin, one can
separately consider the flux dependence of the energy of
the particles with up spin and the one of the particles
with down spin, and add up their contributions to the
persistent current.

If N is even, the contribution of the N/2 up-spins to
the persistent current will have the same sign (−1)N/2 as
the contribution of the N/2 down-spins. This determines
the sign of the persistent current. For odd N , the con-
tribution of the (N + 1)/2 up spins will have the sign
(−1)(N+1)/2 while the down spins contribute a term with
sign (−1)(N−1)/2. In this case, to know the sign of the per-
sistent current one must compare the amplitudes of the
two contributions and the result will in general depend on
the disorder configuration. However, in the zero-disorder
case at low filling, the sign of the persistent current around
flux φ = 0 is known to be paramagnetic for oddN > 1 [30].

N even, strong interaction
At strong interaction, the charges form a Wigner crystal
which is pinned by the disorder. In this limit, the spin de-
gree of freedom can be treated by an effective spin Hamil-
tonian. The latter turns out to be the anti-ferromagnetic

Heisenberg Hamiltonian when φ = 0, the positions i =
i1, i2, . . . , iN of the charges of the Wigner crystal being
the spin lattice sites. Thus, the expectation values of the
occupation number operators vanish everywhere except on
these sites where they satisfy 〈n̂ik,↑ + n̂ik,↓〉 = 1. For an
even number N of spins in 1d, according to a theorem by
Marshall, the ground state |ψ0〉 of this spin Hamiltonian
is a singlet of total spin S = 0 [41], and can be expressed
in the form

|ψ0〉 =
∑
β

fβ

iN∏
i=i1

(
c+i,↑

)ni,↑(β) iN∏
i=i1

(
c+i,↓

)ni,↓(β)

|0〉 (41)

with real fβ > 0 for all spin configurations β with fixed
Sz = 0. Note that in this expression, the ordering of the
operators is done firstly according to spin, and secondly
according to the position.

As in the case of spinless fermions without disorder,
the ground state is a superposition of different basis states
and the lowest order contributions to the ground state
energy, which are flux dependent, are again of the order
n = Lx. Similar to (36), they can arise from different
kinds of sequences. First, only the up spins are moved
around the ring, giving rise to a cyclic permutation of the
spin up operators in (41), yielding the sign (−1)N↑ . The
sequences involving only down spins give the same result.
In addition, a sequence which moves all of the particles to
the position of their neighbor can also contribute to the
flux dependence since the resulting spin configuration is
also contained in the ground state. The sign however is
the same as the one of the previous sequences, since only
one of the particles crosses the boundary and therefore
only the order of the operators for one spin direction has
to be restored by the corresponding cyclic permutation,
and because the prefactor f∗βfβ′ , arising from the weights
of the different components in the ground state, is always
real and positive.

Since all contributions have the same sign, the sign
of the persistent current in one-dimensional disordered
chains at strong interaction is always given by this sign
(−1)N/2, provided the particle number is even, indepen-
dent of the particle densityN/L. Because the ground state
(41) holds only at φ = 0, this sign rule is granted only in
the vicinity of φ = 0.

The resulting sign is the same as the one found in the
non-interacting case [30], and for the Hubbard model at
half filling [31], but it differs from the result for the Hub-
bard model at low filling [32,42], where the current around
φ = 0 is found to be diamagnetic for even numbers of par-
ticles at strong interaction. This difference may be due to
the fact that the Hubbard interaction is local, making the
Hubbard model at low filling in the U → ∞ limit equiv-
alent to spinless fermions. The more realistic long-range
Coulomb interactions considered here do not show this ar-
tifact and lead to a qualitatively different behavior. The
result is also different from the one obtained for Coulomb
interacting electrons with spin in a continuous model with
one barrier [33], which is always found to be diamagnetic
at strong interaction. In this case, one may attribute the
result to the fact that the interaction could lead to a rigid
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Wigner crystal which, in a continuous model, would be
equivalent to one single heavy particle.

4.4.2 Two-dimensional systems

For two dimensional systems, there is the same degeneracy
in the position of the up and the down spins in the mini-
mum Sz subspace. In the strong interaction limit, each line
of the Wigner crystal should follow the one dimensional
law explained above, but the different spin configurations
contributing to the ground state in 2d may have differ-
ent numbers of spin up and spin down electrons in a given
line. This yields contributions of different signs to the per-
sistent current which have to be considered explicitly. It
seems not to be possible to provide a simple sign rule.
However, the power law decay of the persistent current at
large interaction strength should have the same exponent
as in the spinless case.

4.5 Size dependence and limitation of the theory

Here, we address the size dependence of the persistent
current and the limitation of our theory which is given by
the presence of defects in the Wigner crystal.

4.5.1 Localization length for the Wigner crystal

From the exponential size-dependence of equation (22),
one can extract the localization length for the Wigner
crystal. A comparison to the exponential size scaling

I(Lx) ∝ exp(−Lx/ξ) (42)

yields for large Lx a localization length

ξ =
(

ln
(
U

t

))−1

, (43)

showing the same decrease with increasing interaction
strength as the localization length of the Mott insulator
appearing in the Hubbard model at strong interaction [23].

4.5.2 Defects in the Wigner crystal

In the thermodynamic limit, the Wigner crystal is no
longer a single domain and the above theory cannot be
applied in the present form. At any finite, even very strong
interaction, defects and domain walls can arise which al-
low to gain an amount of potential energy which grows
with the size of the domains. The crystal might then pre-
fer to be divided in defect-free domains each being pinned
by the disorder. In the weak disorder limit, one can use
similar arguments as in [43] in order to estimate the size
of such domains. In the following, we briefly address dif-
ferent types of defects and calculate the associated critical
ratio

(
U
W

)
c

above which the theory applies.

Point defects
In the case of point-like defects, consisting of a single

charge of the Wigner crystal being deplaced by one lattice
constant a with respect to its position in the perfect crys-
tal, the gain in disorder potential energy can be estimated
to be ∆Epoint

disorder ≈W . On the other hand, the cost in in-
teraction energy is ∆Epoint

interaction ≈ Ua2

b3 with b being the
mean spacing between particles. Since the charge density
is given by ν = 1/b2, this yields the density depending
criterion

U

W
>

(
U

W

)point

c

≈ 1
a2ν3/2

(44)

for the stability of the Wigner crystal against the creation
of point defects.

Domain walls
The creation of a domain wall costs an interaction energy
which is of the order ∆Ewall

interaction ≈ Ua2

b3 L
wall with Lwall

being the length of the wall. By deplacing a domain of
linear size R containing Nd = R2ν particles, one can typi-
cally gain an amount W

√
Nd of disorder potential energy.

However, the first domain-like defect will appear in the
most favorable position. Since the maximally possible gain
is the extremely improbable value WNd, one can specu-
late that the gain in the optimal position is given by an
intermediate power ∆Edomain

disorder ≈WNγ
d with 1/2 ≤ γ < 1.

The length of the corresponding wall around the domain
is Lwall ∼

√
Nd such that this results in the stability of

the crystal against the creation of domains of size R for

U

W
>

(
U

W

)domain

c

(R) ≈ R2γ−1

a2ν2−γ · (45)

At a fixed W, if U > Udomain
c (L), a crystal of size L will

not be perturbed by domains. Otherwise, one can use U =
Udomain

c (Rc) to extract the typical domain size Rc.
In systems larger than Rc, the electron crystal is di-

vided in many domains of size Rc. If we neglect the cou-
pling energy between these domains, a rough estimate for
the response to a flux φx in x-direction of a system of size
(Lx, Ly) is to take the product of the amplitudes of the
longitudinally aligned Lx/Rc domains and to sum over the
responses of the Ly/Rc “channels”.

Although we have not addressed all possible kinds of
defects, we can assume that there is always a critical
threshold

(
U
W

)defect

c
above which our perturbative theory

applies.

5 Summary

We have presented a systematic perturbative treatment
of persistent currents in 2d lattice models for the case
of strong Coulomb interaction, when the electronic charge
density forms a Wigner crystal. The contribution with the
weakest interaction dependence corresponds to sequences
of one-particle hops along the shortest paths around the
ring. These sequences dominate in the limit of strong in-
teraction and determine the sign of the persistent current.
For spinless fermions, this sign follows simple rules which
depend only on the structure of the Wigner crystal.
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Furthermore, we have shown that, except special cases,
the leading term for the persistent current and therewith
the sign of the persistent current at strong interaction do
not depend on the realization of the disordered potential.
Only the complete absence of disorder can qualitatively
change the behavior. We considered the disorder correc-
tions systematically and showed that they decay as W/U
at strong interaction.

In addition, we have shown that transverse currents
appearing in individual disordered samples are suppressed
much faster than the longitudinal current, thereby estab-
lishing an orientation of the local currents in longitudinal
direction when the interaction is increased. This explains
the numerical observation of the realization-independent
sign of the persistent current and of the orientation of
the local currents in longitudinal direction reported in
references [5,6,34,35].
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